

Identification of aerodynamic coefficients based on free-flight data

S. Dobre, M. Albisser, C. Berner

French-German Research Institute of Saint-Louis (ISL), Saint-Louis, France Aerodynamics and eXterior Ballistics (ABX) group

Introduction – MarcoPolo-R mission

Objective of the mission:

MarcoPolo-R comprise a primary spacecraft with an Earth Re-entry Capsule (ERC) The spacecraft will fly to a Near-Earth Asteroid, it will obtain a sample of roughly 100 g, which will be returned to Earth with the Earth Re-entry capsule.

---- new depth to our understanding of the early Solar System and of other near-Earth asteroids

Our objective:

 \geqslant

ISL testing program in the frame of MarcoPolo-R ERC Dynamic Stability Characterization under ESA/ESTEC (European Space Agency) contract and prime contractor Airbus Safran Launchers

Aeroshape of the Earth Re-entry Capsule designed by Airbus Safran Launchers

To characterize, from the supersonic to the subsonic regime, the basic aerodynamics of a subscale atmospheric entry space probe with primary focus on the dynamic stability characterization, the dynamic scaling and the influence of the center of gravity position

→ identification of the aerodynamic coefficients based on free flight data

- Experimental framework
- Aerodynamic parameter identification
- Results
- Conclusions

Experimental framework

- Aerodynamic parameter identification
- Results
- Conclusions

Model design and instrumentation

Subscale models of an Earth Re-entry Capsule (scale of models: 1:11) Three distinct model architectures: L_25, H_25 and L_30 (Diameter D = 80 mm)

Model H_25 (tungsten: m=1150g) Xcg/D =25%

Model L_30 (tungsten/zicral: m=539g) Xcg/D =30%

Same center of gravity position, distinct masses \rightarrow for dynamic scaling issues

Distinct center of gravity positions \rightarrow for influence of the center of gravity issues

All models equipped with:

- 3 magnetic sensors (1 axial and 2 radials)
- 2 radial accelerometers

www.isl.eu

Open range test facility and test conditions

Several free flight tests were performed with the three distinct model architectures (L_25, H_25, L_30) at the ISL Open Range test site

www.isl.eu

Open range test facility, test conditions and challenges

Experimental conditions and challenges:

- Sabot design for initial angle of attack α0 of 0, 6 and 10°
 - All sabot were made in 4 petals
- Spin rates between 0 and 4.3 Hz
 - Rubber strips glued inside each sabot petal
 - Rifled adapter at the gun muzzle
- Initial Mach number ranging between 0.9 to 3.2, for firing distances of 150 and 225m
- Electronic package potted inside the model in order to prevent damage due to high launch accelerations and impact shocks
- Successful synchronization of distinct measurement techniques

Model/sabot package for α 0 = 10°

according to ISO 1601(

2016 – All rights reserved to ISL

www.isl.eu

Measurement techniques

Example of a space vehicle free flight test for M0 = 0.8, α 0 = 10°, ω_x =39 rpm

Raw signals obtained from the embedded sensors

Video obtained from a high speed video trajectory tracker

44

www.isl.eu

- Experimental framework
- Aerodynamic parameter identification
- Results
- Conclusions

Aerodynamic parameter identification

ISL 2016 – All rights reserved to ISL according to ISO 1601

Parameter identification of aerodynamic coefficients based on free flight data

www.isl.eu

Aerodynamic parameter identification

The determination of the aerodynamic coefficients based on free flight data, considering a given mathematical structure of the model flight,

 $\begin{cases} \dot{\mathbf{x}}(t) = f(x(t), \mathbf{C}(\mathbf{x}(t), \mathbf{p}_a)), & \mathbf{x}(0) = \mathbf{x}_0 \\ \mathbf{y}(t) = g(\mathbf{x}(t)) \end{cases}$

corresponds to a parameter identification problem, where the unknown parameters are defined by

Parameters **p**_i describing the aerodynamic coefficients :

 $C_i(M, \alpha_t, \mathbf{p}_i) = h_i(M, \alpha_t, \mathbf{p}_i)$

• Nine initial state variables:

$$[V_0, \alpha_0, \beta_0, \omega_{x0}, \omega_{y0}, \omega_{z0}, \phi_0, \theta_0, \psi_0]$$

The parameter identification problem is challenging mainly due to:

- The nonlinear structure of the mathematical model
- The nonlinear dependency of the aerodynamic coefficients on several state variables
- The constraints imposed by the experimental conditions
- The absence of an input signal
- The additional estimation of the nine initial state variables

Solution:

Define an adapted identification procedure

ISL 2016 – All rights reserved to ISL according to ISO 16016

www.isl.eu

 $M = V / a, \quad \alpha_t = \arccos(\cos \alpha \cos \beta)$

 $i = D, L\alpha, m\alpha, mq$

Identification procedure

- Experimental framework
- Aerodynamic parameter identification
- Results
- Conclusions

Results 3D magnetometer signals

Run #1452_38, M0=0.8, α0=10°, ω_x=39 rpm

Signals are normalized for values between -1 and 1 corresponding to signal amplitude of 0V to 3.3V

First radial magnetometer

Second radial magnetometer

Results

Evolution of the Mach number and total angle of attack α_t

H_25: M0=3.0, α0=0°, ω_x=37 rpm

L_30: M0=1.2, α0=6°, ω_x=256 rpm

www.isl.eu

Results

Evolution of the polar motion

Results Estimation of the Drag coefficient *C*_D

$$CD(M,\alpha) = C_{D,0} + C_{D,\varepsilon^2} \cdot \sin^2 \alpha_t + C_{D,m1} \cdot M + C_{D,m2} \cdot M^2 + C_{D,sm1} \cdot \begin{cases} (M-0.8)^2, \text{ if } M \ge 0.8\\ 0, & \text{ if } M < 0.8 \end{cases} + C_{D,sm2} \cdot \begin{cases} (M-1.5)^2, \text{ if } M \ge 1.5\\ 0, & \text{ if } M < 1.5 \end{cases}$$

French German Research Institute of Saint-Louis

www.isl.eu

17

Results Estimation of the Pitch moment coefficient derivative $C_{m\alpha}$

Single-fit results Multiple-fit results 0.0 0 -0.05 -0.1 -0.1 $C_{m_{lpha}}(Mach_{lpha_t})$ ₽₹ -0.15 0.2 Cm_o -0.2 • CFD (model L_25) -0.25 • CFD (model L 30) -0.3 ----- Fit: model L 25 -0.3 △Model L_25 -0.35 ■Model H_25 -0.4 0.5 - Fit: model L 30 *Model L 30 10 1.5 -0.4 5 2.5 2 3 0 1 3 0 Mach Total AoA (deg) Mach

$$C_{m\alpha}(M, \alpha_{t}) = C_{m\alpha,0} + C_{m\alpha,\varepsilon} \cdot \sin^{2} \alpha_{t} + C_{m\alpha,m1} \cdot M + C_{m\alpha,m2} \cdot M^{2} + C_{m\alpha,s1} \cdot \begin{cases} (M - 1.2)^{2}, \text{if } M \ge 1.2 \\ 0, & \text{if } M < 1.2 \end{cases} + C_{m\alpha,s2} \cdot \begin{cases} (M - 2)^{2}, \text{if } M \ge 2 \\ 0, & \text{if } M < 2 \end{cases} + C_{m\alpha,s3} \cdot \begin{cases} (\alpha_{t} - \overline{\alpha}_{t,1})^{2}, \text{if } \alpha_{t} \ge \overline{\alpha}_{t,1} \\ 0, & \text{if } \alpha_{t} < \overline{\alpha}_{t,1} \end{cases} = 10^{\circ}$$

French German Research Institute of Saint-Louis

Results Estimation of the Pitch damping coefficient *C_{mg}*

19

Results Validation step (3D magnetometer signals)

Run #1452_45, M0=0.8, α0=0

- Experimental framework
- Aerodynamic parameter identification
- Results
- Conclusions

Conclusions

- Three types of instrumented models were launched at initial Mach numbers equal to 0.8, 1.2, 1.8 and 3.0, for initial angles of 0, 6 and 10° and spin rates between 0 and 250 rpm
- Data reduction:
 - a multiple fit strategy was applied in order to determine the evolution of the aerodynamic coefficients as a function of the Mach number and total angle of attack α_t
 - was very arduous especially for an accurate determination of the initial conditions of the state variables
- Obtained results showed that:
 - with the exception of the normal force coefficient, coefficients C_D , $C_{m\alpha}$ and C_{mq} were determined as a function of Mach and angle of attack
 - in all cases a combination of pitching and yawing that induces in some cases a strong conical or wobbling motion associated to small or large spin rates
 - the dynamic stability derivatives are a complex function of angle of attack and Mach number
- The ISL results allowed the population of the MarcoPolo-R aerodynamic data base (AEDB)

Conclusions Challenges

Model design: from a mechanical and electronical point of view

Instrumentation: design and manufacturing of the electronic equipment, calibration of the sensors

Sabot design: to ensure the desired behavior in flight

Free flight test: challenges in terms of synchronization between measurement techniques, spin system, recovery

Data reduction : *identification of aerodynamic coefficients*

Acknowledgments

- the free flight team (ABX) for the design of the models and sabots, conducting the tests
- E. Junod, O. Litschig, R. Adam (STC) for developing, designing, calibrating the electronics
- the ISL main workshop for manufacturing the models and sabots

THANK YOU FOR YOUR ATTENTION

French-German Institute of Saint-Louis (ISL), France Simona Dobre, Marie Albisser, Claude Berner @: <u>Simona.Dobre@isl.eu</u>; <u>Marie.Albisser@isl.eu</u>

www.isl.eu