

Identification of aerodynamic coefficients based on free-flight data

S. Dobre, M. Albisser, C. Berner

French-German Research **I**nstitute of **S**aint-**L**ouis (**ISL**), Saint-Louis, France **A**erodynamics and e**X**terior **B**allistics (ABX) group

Introduction – MarcoPolo-R mission

Objective of the mission:

MarcoPolo-R comprise a primary spacecraft with an **E**arth **R**e-entry **C**apsule (ERC) The spacecraft will fly to a Near-Earth Asteroid, it will obtain a sample of roughly 100 g, which will be returned to Earth with the Earth Re-entry capsule.

new depth to our understanding of the early Solar System and of other near-Earth asteroids

Our objective:

 \blacktriangleright

 \blacktriangleright

ISL testing program in the frame of MarcoPolo-R ERC Dynamic Stability Characterization under ESA/ESTEC (European Space Agency) contract and prime contractor Airbus Safran Launchers

Aeroshape of the Earth Re-entry Capsule designed by Airbus Safran Launchers

To characterize, from the supersonic to the subsonic regime, the basic aerodynamics of a subscale atmospheric entry space probe with primary focus on the dynamic stability characterization, the dynamic scaling and the influence of the center of gravity position

 \rightarrow identification of the aerodynamic coefficients based on free flight data

- **Experimental framework**
- Aerodynamic parameter identification
- **Results**
- Conclusions

- **Experimental framework**
- **Aerodynamic parameter identification**
- **Results**
- Conclusions

71.. j 1

Model design and instrumentation

Three distinct model architectures: L_25, H_25 and L_30 (Diameter D = 80 mm) Subscale models of an Earth Re-entry Capsule (scale of models: 1:11)

Model H_25 (tungsten: m=1150g) $Xcg/D = 25%$

Model L_30 (tungsten/zicral: m=539g) $Xcg/D = 30%$

Same center of gravity position, distinct masses *→ for dynamic scaling issues*

Distinct center of gravity positions *→ for influence of the center of gravity issues*

All models equipped with:

- 3 magnetic sensors (1 axial and 2 radials)
- 2 radial accelerometers

Open range test facility and test conditions

Several free flight tests were performed with the three distinct model architectures (L_25, H_25, L_30) at the ISL Open Range test site

Open range test facility, test conditions and challenges

Experimental conditions and challenges:

- Sabot design for initial angle of attack α 0 of 0, 6 and 10°
	- All sabot were made in 4 petals
- Spin rates between 0 and 4.3 Hz
	- Rubber strips glued inside each sabot petal
	- Rifled adapter at the gun muzzle
- Initial Mach number ranging between 0.9 to 3.2, for firing distances of 150 and 225m
- Electronic package potted inside the model in order to prevent damage due to high launch accelerations and impact shocks
- Successful synchronization of distinct measurement techniques

Model/sabot package for α 0 = 10°

according to ISO 16016

2016 - All rights rese

Measurement techniques

Example of a space vehicle free flight test for M0 = 0.8, α 0 = 10°, ω _x=39 rpm

Raw signals obtained from the embedded sensors

Video obtained from a high speed video trajectory tracker

757

- **Experimental framework**
- Aerodynamic parameter identification
- **Results**
- **E** Conclusions

Aerodynamic parameter identification

Parameter identification of aerodynamic coefficients based on free flight data

Aerodynamic parameter identification

The determination of the aerodynamic coefficients based on free flight data, considering a given mathematical structure of the model flight,

> $\overline{\mathcal{L}}$ $\left\{ \right.$ $\left\lceil$ $=$ $= f(x(t), \mathbf{C}(\mathbf{x}(t), \mathbf{p}_q)), \mathbf{x}(0) =$ $(t) = g({\bf x}(t))$ $(t) = f(x(t), \mathbf{C}(\mathbf{x}(t), \mathbf{p}_a)), \quad \mathbf{x}(0) = \mathbf{x}_0$ t *)* = g (**x**(*t*) $f(x(t), \mathbf{C}(\mathbf{x}(t), \mathbf{p}_a))$ $\mathbf{y}(t) = g(\mathbf{x})$ $\dot{\mathbf{x}}(t) = f(x(t), \mathbf{C}(\mathbf{x}(t), \mathbf{p}_a)), \quad \mathbf{x}(0) = \mathbf{x}$

corresponds to a parameter identification problem, where the unknown parameters are defined by

Parameters **p**_i describing the aerodynamic coefficients :

 \mathbf{p}_i) = $h_i(M, \alpha_i, \mathbf{p}_i)$

• Nine initial state variables:

$$
C_i(M, \alpha_t, \mathbf{p}_i) = h_i(M, \alpha_t, \mathbf{p}_i)
$$

nital state variables:

$$
[V_0, \alpha_0, \beta_0, \omega_{x0}, \omega_{y0}, \omega_{z0}, \phi_0, \theta_0, \psi_0]
$$

identification problem is challenging main
ear structure of the mathematical model
ear dependency of the aerodynamic coefficient
inints imposed by the experimental condition
of the nine initial state vari
and estimation of the nine initial state vari
Solution:
Define an adapted identification procedure

The parameter identification problem is challenging mainly due to:

- **The nonlinear structure of the mathematical model**
- **The nonlinear dependency of the aerodynamic coefficients on several state variables**
- **The constraints imposed by the experimental conditions**
- **The absence of an input signal**
- **EXECT:** The additional estimation of the nine initial state variables

Solution:

© ISL 2016 – All rights reserved to ISL according to ISO 16016

D ISL 2016 – All rights reserved to ISL according to ISO 16016

 $M = V/a$, $\alpha_t = \arccos(\cos \alpha \cos \beta)$

 $i = D, L\alpha, m\alpha, mq$

Identification procedure

74 -

- **Experimental framework**
- **Aerodynamic parameter identification**
- **Results**
- Conclusions

71.. j 7

Results 3D magnetometer signals

Run #1452_38, M0=0.8, α0=10°, ω_x=39 rpm

Signals are normalized for values between - 1 and 1 corresponding to signal amplitude of 0V to 3.3V

First radial magnetometer Second radial magnetometer

ككا

Evolution of the Mach number and total angle of attack α_t

L_30: M0=1.2, a**0=6° ,** w**x=256 rpm**

Lui

Evolution of the polar motion

Results Estimation of the Drag coefficient C_p

 $(M-0.8)^2$, if $M \ge 0.8$ $(M-1.5)$ $\overline{\mathcal{L}}$ $\left\{ \right.$ \lt $(-1.5)^2$, if M \ge $+C_{D \text{sm2}}$. $\overline{\mathcal{L}}$ $\left\{ \right.$ \lt $-0.8)^2$, if M \ge $+C_{D \text{sm1}}$. 0, if $M < 1.5$ $(1.5)^2$, if M ≥ 1.5 0, if $M < 0.8$ $(0.8)^2$, if $M \ge 0.8$ $(M-1.5)^2$ $, sm2$ $, \text{sm1}$ *M C M C* $\int_{D,sm1}^{D,sm1} \left\{ \frac{(M-0.8)^2}{10}, \text{if } M \geq 0.8 + C_{D,sm2} \right\}$

according to ISO 16016

Estimation of the Pitch moment coefficient derivative $C_{m\alpha}$

Multiple-fit results Single-fit results 0.0 $0 -$ -0.05 -0.1 -0.1 $\frac{1}{2}$ $\mathsf{C}_{\mathsf{m}{\alpha}}^{(\mathsf{Mach}\,\alpha\alpha)}$ -0.15 C_{mod} C_{mod} -0.2 $\overline{B'}$ پر
را ⊑' _ن ● CFD (model L_25) -0.25 ● CFD (model L 30) -0.3 ∆Model L_25 -0.3 ----- Fit: model L 25 -0.35 Model H_25 -0.4 0.5 - Fit: model L_30 15 ***Model L_30** 1 10 1.5 -0.4 2 5 2.5 $\overline{2}$ 3 $\mathbf 0$ 1 3 0 Mach $\frac{3}{2}$ Mach Total AoA (deg) Mach

$$
C_{_{m\alpha}}(M, \alpha_{_{t}}) = C_{_{m\alpha,0}} + C_{_{m\alpha,\varepsilon}} \cdot \sin^{2} \alpha_{_{t}} + C_{_{m\alpha,m1}} \cdot M + C_{_{m\alpha,m2}} \cdot M^{2} + C_{_{m\alpha,s1}} \cdot \begin{cases} (M-1.2)^{2}, \text{if } M \ge 1.2 \\ 0, \quad & \text{if } M < 1.2 \end{cases} + C_{_{m\alpha,s2}} \cdot \begin{cases} (M-2)^{2}, \text{if } M \ge 2 \\ 0, \quad & \text{if } M < 2 \end{cases}
$$

+
$$
C_{_{m\alpha,s3}} \cdot \begin{cases} (\alpha_{_{t}} - \overline{\alpha}_{_{t,1}})^{2}, \text{if } \alpha_{_{t}} \ge \overline{\alpha}_{_{t,1}} \\ 0, \quad & \text{if } \alpha_{_{t}} < \overline{\alpha}_{_{t,1}} \end{cases} = 10^{\circ}
$$

Estimation of the Pitch damping coefficient *Cmq*

Validation step (3D magnetometer signals)

Run #1452_45, M0=0.8, a**0=0**

- **Experimental framework**
- **Aerodynamic parameter identification**
- **Results**
- **Conclusions**

Conclusions

- Three types of instrumented models were launched at initial Mach numbers equal to 0.8, 1.2, 1.8 and 3.0, for initial angles of 0, 6 and 10° and spin rates between 0 and 250 rpm
- Data reduction:
	- a multiple fit strategy was applied in order to determine the evolution of the aerodynamic coefficients as a function of the Mach number and total angle of attack α_t
	- was very arduous especially for an accurate determination of the initial conditions of the state variables
- Obtained results showed that:
	- $-$ with the exception of the normal force coefficient, coefficients C_{D} , $C_{m\alpha}$ and C_{mq} were determined as a function of Mach and angle of attack
	- in all cases a combination of pitching and yawing that induces in some cases a strong conical or wobbling motion associated to small or large spin rates
	- the dynamic stability derivatives are a complex function of angle of attack and Mach number
- The ISL results allowed the population of the MarcoPolo-R aerodynamic data base (AEDB)

Conclusions Challenges

Model design: *from a mechanical and electronical point of view*

Instrumentation: *design and manufacturing of the electronic equipment, calibration of the sensors*

Sabot design: *to ensure the desired behavior in flight*

Free flight test: *challenges in terms of synchronization between measurement techniques, spin system, recovery*

Data reduction : *identification of aerodynamic coefficients*

Acknowledgments

- the free flight team (ABX) for the design of the models and sabots, conducting the tests
- E. Junod, O. Litschig, R. Adam (STC) for developing, designing, calibrating the electronics
- the ISL main workshop for manufacturing the models and sabots

THANK YOU FOR YOUR ATTENTION

French-German Institute of Saint-Louis (ISL), France *Simona Dobre, Marie Albisser, Claude Berner* @: Simona.Dobre@isl.eu; Marie.Albisser@isl.eu

